These functions return logical vectors the length of the ties in a network identifying which hold certain properties or positions in the network.

  • tie_is_triangular() marks ties that are in triangles.

  • tie_is_cyclical() marks ties that are in cycles.

  • tie_is_transitive() marks ties that complete transitive closure.

  • tie_is_triplet() marks ties that are in a transitive triplet.

  • tie_is_simmelian() marks ties that are both in a triangle and fully reciprocated.

They are most useful in highlighting parts of the network that are cohesively connected.

tie_is_triangular(.data)

tie_is_transitive(.data)

tie_is_triplet(.data)

tie_is_cyclical(.data)

tie_is_simmelian(.data)

tie_is_forbidden(.data)

tie_is_imbalanced(.data)

Arguments

.data

An object of a manynet-consistent class:

  • matrix (adjacency or incidence) from {base} R

  • edgelist, a data frame from {base} R or tibble from {tibble}

  • igraph, from the {igraph} package

  • network, from the {network} package

  • tbl_graph, from the {tidygraph} package

Examples

ison_monks %>% to_uniplex("like") %>% 
  mutate_ties(tri = tie_is_triangular())
#> 
#> ── # Sampson's Monks ───────────────────────────────────────────────────────────
#> # A longitudinal, labelled, multiplex, weighted, directed network of 18 nodes
#> and 168 arcs over 3 waves
#> 
#> ── Nodes 
#> # A tibble: 18 × 3
#>   name        groups        left
#>   <chr>       <chr>        <dbl>
#> 1 Romuald     Interstitial     3
#> 2 Bonaventure Loyal            4
#> 3 Ambrose     Loyal            4
#> 4 Berthold    Loyal            4
#> 5 Peter       Loyal            3
#> 6 Louis       Loyal            4
#> # ℹ 12 more rows
#> 
#> ── Ties 
#> # A tibble: 168 × 5
#>    from    to weight  wave tri       
#>   <int> <int>  <dbl> <dbl> <tie_mark>
#> 1     1     2      1     2 TRUE      
#> 2     1     2      1     3 TRUE      
#> 3     1     3      1     3 TRUE      
#> 4     1     5      3     1 TRUE      
#> 5     1     5      3     2 TRUE      
#> 6     1     5      3     3 TRUE      
#> # ℹ 162 more rows
#> 
  #graphr(edge_color = "tri")
ison_adolescents %>% to_directed() %>% 
  mutate_ties(trans = tie_is_transitive())
#> ── # The Adolescent Society ────────────────────────────────────────────────────
#> # A labelled, multiplex, directed network of 8 adolescents and 10 friendships
#> arcs
#> 
#> ── Nodes 
#> # A tibble: 8 × 1
#>   name 
#>   <chr>
#> 1 Betty
#> 2 Sue  
#> 3 Alice
#> 4 Jane 
#> 5 Dale 
#> 6 Pam  
#> # ℹ 2 more rows
#> 
#> ── Ties 
#> # A tibble: 10 × 3
#>    from    to trans     
#>   <int> <int> <tie_mark>
#> 1     2     1 FALSE     
#> 2     3     2 FALSE     
#> 3     3     4 FALSE     
#> 4     2     5 FALSE     
#> 5     5     3 FALSE     
#> 6     5     4 TRUE      
#> # ℹ 4 more rows
#> 
  #graphr(edge_color = "trans")
ison_adolescents %>% to_directed() %>% 
  mutate_ties(trip = tie_is_triplet())
#> ── # The Adolescent Society ────────────────────────────────────────────────────
#> # A labelled, multiplex, directed network of 8 adolescents and 10 friendships
#> arcs
#> 
#> ── Nodes 
#> # A tibble: 8 × 1
#>   name 
#>   <chr>
#> 1 Betty
#> 2 Sue  
#> 3 Alice
#> 4 Jane 
#> 5 Dale 
#> 6 Pam  
#> # ℹ 2 more rows
#> 
#> ── Ties 
#> # A tibble: 10 × 3
#>    from    to trip      
#>   <int> <int> <tie_mark>
#> 1     2     1 FALSE     
#> 2     2     3 TRUE      
#> 3     4     3 TRUE      
#> 4     5     2 FALSE     
#> 5     3     5 TRUE      
#> 6     4     5 TRUE      
#> # ℹ 4 more rows
#> 
  #graphr(edge_color = "trip")
ison_adolescents %>% to_directed() %>% 
  mutate_ties(cyc = tie_is_cyclical())
#> ── # The Adolescent Society ────────────────────────────────────────────────────
#> # A labelled, multiplex, directed network of 8 adolescents and 10 friendships
#> arcs
#> 
#> ── Nodes 
#> # A tibble: 8 × 1
#>   name 
#>   <chr>
#> 1 Betty
#> 2 Sue  
#> 3 Alice
#> 4 Jane 
#> 5 Dale 
#> 6 Pam  
#> # ℹ 2 more rows
#> 
#> ── Ties 
#> # A tibble: 10 × 3
#>    from    to cyc       
#>   <int> <int> <tie_mark>
#> 1     2     1 FALSE     
#> 2     2     3 TRUE      
#> 3     4     3 FALSE     
#> 4     5     2 FALSE     
#> 5     5     3 FALSE     
#> 6     4     5 FALSE     
#> # ℹ 4 more rows
#> 
  #graphr(edge_color = "cyc")
ison_monks %>% to_uniplex("like") %>% 
  mutate_ties(simmel = tie_is_simmelian())
#> ── # Sampson's Monks ───────────────────────────────────────────────────────────
#> # A longitudinal, labelled, multiplex, weighted, directed network of 18 nodes
#> and 168 arcs over 3 waves
#> 
#> ── Nodes 
#> # A tibble: 18 × 3
#>   name        groups        left
#>   <chr>       <chr>        <dbl>
#> 1 Romuald     Interstitial     3
#> 2 Bonaventure Loyal            4
#> 3 Ambrose     Loyal            4
#> 4 Berthold    Loyal            4
#> 5 Peter       Loyal            3
#> 6 Louis       Loyal            4
#> # ℹ 12 more rows
#> 
#> ── Ties 
#> # A tibble: 168 × 5
#>    from    to weight  wave simmel    
#>   <int> <int>  <dbl> <dbl> <tie_mark>
#> 1     1     2      1     2 FALSE     
#> 2     1     2      1     3 FALSE     
#> 3     1     3      1     3 FALSE     
#> 4     1     5      3     1 FALSE     
#> 5     1     5      3     2 FALSE     
#> 6     1     5      3     3 FALSE     
#> # ℹ 162 more rows
#> 
  #graphr(edge_color = "simmel")
generate_random(8, directed = TRUE) %>% 
  mutate_ties(forbid = tie_is_forbidden())
#> ── # Erdos-Renyi (gnp) graph ───────────────────────────────────────────────────
#> # A multiplex, directed network of 8 nodes and 29 arcs
#> 
#> ── Ties 
#> # A tibble: 29 × 3
#>    from    to forbid    
#>   <int> <int> <tie_mark>
#> 1     2     1 TRUE      
#> 2     5     1 FALSE     
#> 3     7     1 TRUE      
#> 4     1     2 TRUE      
#> 5     3     2 FALSE     
#> 6     4     2 TRUE      
#> # ℹ 23 more rows
#> 
  #graphr(edge_color = "forbid")
tie_is_imbalanced(ison_marvel_relationships)
#>   `Abomination-Beast` `Abomination-Colossus` `Abomination-Cyclops`
#> 1 TRUE                TRUE                   TRUE                 
#> # ... with 555 more values from this nodeset unprinted. Use `print(..., n = Inf)` to print all values.