These functions allow users to add and delete ties and their attributes:
add_ties()
adds additional ties to network data
delete_ties()
deletes ties from network data
add_tie_attribute()
and mutate_ties()
offer ways to add
a vector of values to a network as a tie attribute.
rename_ties()
renames tie attributes.
bind_ties()
appends the tie data from two networks and
join_ties()
merges ties from two networks,
adding a tie attribute identifying the newly added ties.
filter_ties()
subsets ties based on some tie attribute-related logical statement.
Note that while add_*()
/delete_*()
functions operate similarly as comparable {igraph}
functions,
mutate*()
, bind*()
, etc work like {tidyverse}
or {dplyr}
-style functions.
add_ties(.data, ties, attribute = NULL)
delete_ties(.data, ties)
add_tie_attribute(.data, attr_name, vector)
mutate_ties(.data, ...)
rename_ties(.data, ...)
arrange_ties(.data, ...)
bind_ties(.data, ...)
join_ties(.data, object2, attr_name)
filter_ties(.data, ...)
select_ties(.data, ...)
summarise_ties(.data, ...)
An object of a manynet-consistent class:
matrix (adjacency or incidence) from {base}
R
edgelist, a data frame from {base}
R or tibble from {tibble}
igraph, from the {igraph}
package
network, from the {network}
package
tbl_graph, from the {tidygraph}
package
The number of ties to be added or an even list of ties.
A named list to be added as tie or node attributes.
Name of the new attribute in the resulting object.
A vector of values for the new attribute.
Additional arguments.
A second object to copy nodes or ties from.
A tidygraph (tbl_graph
) data object.
Other modifications:
manip_as
,
manip_correlation
,
manip_deformat
,
manip_from
,
manip_levels
,
manip_miss
,
manip_nodes
,
manip_paths
,
manip_permutation
,
manip_preformat
,
manip_project
,
manip_reformat
,
manip_scope
,
manip_split
other <- create_filled(4) %>% mutate(name = c("A", "B", "C", "D"))
mutate_ties(other, form = 1:6) %>% filter_ties(form < 4)
#> # Filled network
#> # A labelled, multiplex, undirected network of 4 nodes and 3 ties
#> # A tibble: 4 × 1
#> name
#> <chr>
#> 1 A
#> 2 B
#> 3 C
#> 4 D
#> # A tibble: 3 × 3
#> from to form
#> <int> <int> <int>
#> 1 1 2 1
#> 2 1 3 2
#> 3 1 4 3
add_tie_attribute(other, "weight", c(1, 2, 2, 2, 1, 2))
#> # Filled network
#> # A labelled, weighted, undirected network of 4 nodes and 6 ties
#> # A tibble: 4 × 1
#> name
#> <chr>
#> 1 A
#> 2 B
#> 3 C
#> 4 D
#> # A tibble: 6 × 3
#> from to weight
#> <int> <int> <dbl>
#> 1 1 2 1
#> 2 1 3 2
#> 3 1 4 2
#> 4 2 3 2
#> 5 2 4 1
#> 6 3 4 2
ison_adolescents %>% add_ties(c("Betty","Tina")) %>% graphr()
delete_ties(ison_adolescents, 3)
#> # The Adolescent Society
#> # A labelled, undirected network of 8 adolescents and 9 friendships ties
#> # A tibble: 8 × 1
#> name
#> <chr>
#> 1 Betty
#> 2 Sue
#> 3 Alice
#> 4 Jane
#> 5 Dale
#> 6 Pam
#> # ℹ 2 more rows
#> # A tibble: 9 × 2
#> from to
#> <int> <int>
#> 1 1 2
#> 2 2 3
#> 3 2 5
#> 4 3 5
#> 5 4 5
#> 6 2 6
#> # ℹ 3 more rows
delete_ties(ison_adolescents, "Alice|Sue")
#> # The Adolescent Society
#> # A labelled, undirected network of 8 adolescents and 9 friendships ties
#> # A tibble: 8 × 1
#> name
#> <chr>
#> 1 Betty
#> 2 Sue
#> 3 Alice
#> 4 Jane
#> 5 Dale
#> 6 Pam
#> # ℹ 2 more rows
#> # A tibble: 9 × 2
#> from to
#> <int> <int>
#> 1 1 2
#> 2 3 4
#> 3 2 5
#> 4 3 5
#> 5 4 5
#> 6 2 6
#> # ℹ 3 more rows