These functions offer tools for joining lists of manynet-consistent objects (matrices, igraph, tidygraph, or network objects) into a single object.

  • from_subgraphs() modifies a list of subgraphs into a single tidygraph.

  • from_egos() modifies a list of ego networks into a whole tidygraph

  • from_waves() modifies a list of network waves into a longitudinal tidygraph.

  • from_slices() modifies a list of time slices of a network into a dynamic tidygraph.

  • from_ties() modifies a list of different ties into a multiplex tidygraph

from_subgraphs(netlist)

from_egos(netlist)

from_waves(netlist)

from_slices(netlist, remove.duplicates = FALSE)

from_ties(netlist, netnames)

Arguments

netlist

A list of network, igraph, tidygraph, matrix, or edgelist objects.

remove.duplicates

Should duplicates be removed? By default FALSE. If TRUE, duplicated edges are removed.

netnames

A character vector of names for the different network objects, if not already named within the list.

Value

A tidygraph object combining the list of network data.

Examples

ison_adolescents %>%
  mutate(unicorn = sample(c("yes", "no"), 8, replace = TRUE)) %>%
  to_subgraphs(attribute = "unicorn") %>%
  from_subgraphs()
#> Joining with `by = join_by(name, unicorn)`
#> # A labelled, undirected network of 8 nodes and 5 ties
#> 
#> ── Nodes 
#> # A tibble: 8 × 2
#>   name  unicorn
#>   <chr> <chr>  
#> 1 Betty no     
#> 2 Sue   no     
#> 3 Alice no     
#> 4 Pam   no     
#> 5 Tina  no     
#> 6 Jane  yes    
#> # ℹ 2 more rows
#> 
#> ── Ties 
#> # A tibble: 5 × 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     2     3
#> 3     2     4
#> 4     3     4
#> 5     6     7
#> 
ison_adolescents %>%
  to_egos() %>%
  from_egos()
#> # A labelled, directed network of 8 nodes and 10 arcs
#> 
#> ── Nodes 
#> # A tibble: 8 × 1
#>   name 
#>   <chr>
#> 1 Betty
#> 2 Sue  
#> 3 Alice
#> 4 Jane 
#> 5 Pam  
#> 6 Carol
#> # ℹ 2 more rows
#> 
#> ── Ties 
#> # A tibble: 10 × 2
#>    from    to
#>   <int> <int>
#> 1     1     2
#> 2     2     3
#> 3     2     7
#> 4     3     7
#> 5     2     5
#> 6     3     5
#> # ℹ 4 more rows
#> 
ison_adolescents %>%
  mutate_ties(wave = sample(1:4, 10, replace = TRUE)) %>%
  to_waves(attribute = "wave") %>%
  from_waves()
#> # A longitudinal, labelled, directed network of 8 nodes and 10 arcs over 4
#> waves
#> 
#> ── Nodes 
#> # A tibble: 8 × 1
#>   name 
#>   <chr>
#> 1 Alice
#> 2 Jane 
#> 3 Pam  
#> 4 Betty
#> 5 Sue  
#> 6 Carol
#> # ℹ 2 more rows
#> 
#> ── Ties 
#> # A tibble: 10 × 3
#>    from    to  wave
#>   <int> <int> <int>
#> 1     1     2     1
#> 2     2     7     1
#> 3     3     6     1
#> 4     4     5     2
#> 5     5     7     2
#> 6     5     3     2
#> # ℹ 4 more rows
#> 
ison_adolescents %>%
  mutate_ties(time = 1:10, increment = 1) %>% 
  add_ties(c(1,2), list(time = 3, increment = -1)) %>% 
  to_slices(slice = c(5,7)) %>%
  from_slices()
#> # A labelled, weighted, directed network of 5 nodes and 10 arcs
#> 
#> ── Nodes 
#> # A tibble: 5 × 1
#>   name 
#>   <chr>
#> 1 Sue  
#> 2 Alice
#> 3 Jane 
#> 4 Dale 
#> 5 Pam  
#> 
#> ── Ties 
#> # A tibble: 10 × 3
#>    from    to weight
#>   <int> <int>  <dbl>
#> 1     1     2      1
#> 2     2     3      1
#> 3     1     4      1
#> 4     2     4      1
#> 5     1     2      1
#> 6     2     3      1
#> # ℹ 4 more rows
#>