These functions return logical vectors the length of the nodes in a network identifying which hold certain properties or positions in the network.
node_is_random() marks one or more nodes at random.
node_is_max() and node_is_min() are more generally useful
for converting the results from some node measure into a mark-class object.
They can be particularly useful for highlighting which node or nodes
are key because they minimise or, more often, maximise some measure.
node_is_random(.data, size = 1)
node_is_max(node_measure, ranks = 1)
node_is_min(node_measure, ranks = 1)
node_is_mean(node_measure, ranks = 1)An object of a manynet-consistent class:
matrix (adjacency or incidence) from {base} R
edgelist, a data frame from {base} R or tibble from {tibble}
igraph, from the {igraph} package
network, from the {network} package
tbl_graph, from the {tidygraph} package
The number of nodes to select (as TRUE).
An object created by a node_ measure.
The number of ranks of max or min to return.
For example, ranks = 3 will return TRUE for nodes with
scores equal to any of the top (or, for node_is_min(), bottom)
three scores.
By default, ranks = 1.
Other marks:
mark_diff,
mark_nodes,
mark_tie_select,
mark_ties,
mark_triangles
node_is_random(ison_brandes, 2)
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
#> 1 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
#node_is_max(migraph::node_degree(ison_brandes))
#node_is_min(migraph::node_degree(ison_brandes))
#node_is_mean(node_degree(ison_brandes))