These functions include ways to take a census of the positions of nodes in a network:

  • node_by_tie() returns a census of the ties in a network. For directed networks, out-ties and in-ties are bound together. For multiplex networks, the various types of ties are bound together.

  • node_by_triad() returns a census of the triad configurations nodes are embedded in.

  • node_by_tetrad() returns a census of nodes' positions in motifs of four nodes.

  • node_by_path() returns the shortest path lengths of each node to every other node in the network.

node_by_tie(.data)

node_by_dyad(.data)

node_by_triad(.data)

node_by_tetrad(.data)

node_by_path(.data)

Arguments

.data

An object of a manynet-consistent class:

  • matrix (adjacency or incidence) from {base} R

  • edgelist, a data frame from {base} R or tibble from {tibble}

  • igraph, from the {igraph} package

  • network, from the {network} package

  • tbl_graph, from the {tidygraph} package

Tetrad census

The nodal tetrad census counts the number of four-node configurations that each node is embedded in. The function returns a matrix with a special naming convention:

  • E4 (aka co-K4): This is an empty set of four nodes; no ties

  • I4 (aka co-diamond): This is a set of four nodes with just one tie

  • H4 (aka co-C4): This set of four nodes includes two non-adjacent ties

  • L4 (aka co-paw): This set of four nodes includes two adjacent ties

  • D4 (aka co-claw): This set of four nodes includes three adjacent ties, in the form of a triangle with one isolate

  • U4 (aka P4, four-actor line): This set of four nodes includes three ties arranged in a line

  • Y4 (aka claw): This set of four nodes includes three ties all adjacent to a single node

  • P4 (aka paw, kite): This set of four nodes includes four ties arranged as a triangle with an extra tie hanging off of one of the nodes

  • C4 (aka bifan): This is a symmetric box or 4-cycle or set of shared choices

  • Z4 (aka diamond): This resembles C4 but with an extra tie cutting across the box

  • X4 (aka K4): This resembles C4 but with two extra ties cutting across the box; a realisation of all possible ties

Graphs of these motifs can be shown using plot(node_by_tetrad(ison_southern_women)).

References

On the dyad census

Holland, Paul W., and Samuel Leinhardt. 1970. "A Method for Detecting Structure in Sociometric Data". American Journal of Sociology, 76: 492-513. doi:10.1016/B978-0-12-442450-0.50028-6

On the triad census

Davis, James A., and Samuel Leinhardt. 1967. “The Structure of Positive Interpersonal Relations in Small Groups.” 55.

On the tetrad census

Ortmann, Mark, and Ulrik Brandes. 2017. “Efficient Orbit-Aware Triad and Quad Census in Directed and Undirected Graphs.” Applied Network Science 2(1):13. doi:10.1007/s41109-017-0027-2 .

McMillan, Cassie, and Diane Felmlee. 2020. "Beyond Dyads and Triads: A Comparison of Tetrads in Twenty Social Networks". Social Psychology Quarterly 83(4): 383-404. doi:10.1177/0190272520944151

On paths

Dijkstra, Edsger W. 1959. "A note on two problems in connexion with graphs". Numerische Mathematik 1, 269-71. doi:10.1007/BF01386390 .

Opsahl, Tore, Filip Agneessens, and John Skvoretz. 2010. "Node centrality in weighted networks: Generalizing degree and shortest paths". Social Networks 32(3): 245-51. doi:10.1016/j.socnet.2010.03.006 .

See also

Examples

task_eg <- to_named(to_uniplex(ison_algebra, "tasks"))
(tie_cen <- node_by_tie(task_eg))
#> # A tibble: 16 × 33
#>   names   fromAntoinette fromBrandon fromCandice fromDoreen fromEmerson fromFinn
#>   <chr>            <dbl>       <dbl>       <dbl>      <dbl>       <dbl>    <dbl>
#> 1 Antoin…            0             0        0             0        0.3      0   
#> 2 Brandon            0             0        0             0        0        0   
#> 3 Candice            0             0        0             0        0.15     0.75
#> 4 Doreen             0             0        0             0        0        0   
#> 5 Emerson            0.3           0        0.15          0        0        0.45
#> 6 Finn               0             0        0.6           0        0.75     0   
#> # ℹ 10 more rows
#> # ℹ 26 more variables: fromGreyson <dbl>, fromHenry <dbl>, fromIrving <dbl>,
#> #   fromJeffery <dbl>, fromKyle <dbl>, fromLaverne <dbl>, fromMadison <dbl>,
#> #   fromNatalie <dbl>, fromOscar <dbl>, fromPiper <dbl>, toAntoinette <dbl>,
#> #   toBrandon <dbl>, toCandice <dbl>, toDoreen <dbl>, toEmerson <dbl>,
#> #   toFinn <dbl>, toGreyson <dbl>, toHenry <dbl>, toIrving <dbl>,
#> #   toJeffery <dbl>, toKyle <dbl>, toLaverne <dbl>, toMadison <dbl>, …
node_by_dyad(ison_networkers)
#> # A tibble: 32 × 4
#>   names              Mutual Asymmetric  Null
#>   <chr>               <dbl>      <dbl> <dbl>
#> 1 Lin Freeman            29          2     1
#> 2 Doug White             21         10     1
#> 3 Ev Rogers               3          8    21
#> 4 Richard Alba           17          2    13
#> 5 Phipps Arabie           8         20     4
#> 6 Carol Barner-Barry     12          4    16
#> # ℹ 26 more rows
(triad_cen <- node_by_triad(task_eg))
#> # A tibble: 16 × 17
#>   names   X003  X012  X102 X021D X021U X021C X111D X111U X030T X030C  X201 X120D
#>   <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Antoi…    23    11    39     0     0     0     2     2     0     0    17     0
#> 2 Brand…    21     6    47     0     0     0     5     6     0     0    10     0
#> 3 Candi…    34     3    46     0     0     0     2     1     0     0    13     0
#> 4 Doreen    52     6    28     0     0     0     0     0     0     0    18     0
#> 5 Emers…    17    11    37     1     0     1     6     7     0     0    15     1
#> 6 Finn      23     8    40     1     0     0     3     3     0     0    18     1
#> # ℹ 10 more rows
#> # ℹ 4 more variables: X120U <dbl>, X120C <dbl>, X210 <dbl>, X300 <dbl>
node_by_tetrad(ison_southern_women)
#> # A tibble: 18 × 12
#>   names        E4    I4    H4    L4    D4    U4    Y4    P4    C4    Z4    X4
#>   <chr>     <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Evelyn     1241  1347   176  1138   272     0   246     0    75     0     0
#> 2 Laura      1365  1389   180  1077   213     0   203     0    68     0     0
#> 3 Theresa    1333  1244   123  1137   286     0   281     0    91     0     0
#> 4 Brenda     1384  1356   176  1093   210     0   205     0    71     0     0
#> 5 Charlotte  1728  1562   157   836   117     0    74     0    21     0     0
#> 6 Frances    1840  1433   114   810   134     0   134     0    30     0     0
#> # ℹ 12 more rows
#> # A tibble: 14 × 12
#>   names    E4    I4    H4    L4    D4    U4    Y4    P4    C4    Z4    X4
#>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 E1     1877  1632    96   710   113     0    52     0    15     0     0
#> 2 E2     1886  1631    84   698   122     0    58     0    16     0     0
#> 3 E3     1368  1611   190  1006   168     0    98     0    54     0     0
#> 4 E4     1681  1673   131   784   138     0    64     0    24     0     0
#> 5 E5     1061  1557   232  1208   216     0   140     0    81     0     0
#> 6 E6     1085  1576   178  1142   287     0   156     0    71     0     0
#> # ℹ 8 more rows
node_by_path(ison_adolescents)
#> # A tibble: 8 × 9
#>   names Betty   Sue Alice  Jane  Dale   Pam Carol  Tina
#>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Betty     0     1     2     3     2     2     3     4
#> 2 Sue       1     0     1     2     1     1     2     3
#> 3 Alice     2     1     0     1     1     1     2     3
#> 4 Jane      3     2     1     0     1     2     3     4
#> 5 Dale      2     1     1     1     0     2     3     4
#> 6 Pam       2     1     1     2     2     0     1     2
#> # ℹ 2 more rows
node_by_path(ison_southern_women)
#> # A tibble: 18 × 33
#>   names  Evelyn Laura Theresa Brenda Charlotte Frances Eleanor Pearl  Ruth Verne
#>   <chr>   <dbl> <dbl>   <dbl>  <dbl>     <dbl>   <dbl>   <dbl> <dbl> <dbl> <dbl>
#> 1 Evelyn      0     2       2      2         2       2       2     2     2     2
#> 2 Laura       2     0       2      2         2       2       2     2     2     2
#> 3 There…      2     2       0      2         2       2       2     2     2     2
#> 4 Brenda      2     2       2      0         2       2       2     2     2     2
#> 5 Charl…      2     2       2      2         0       2       2     4     2     2
#> 6 Franc…      2     2       2      2         2       0       2     2     2     2
#> # ℹ 12 more rows
#> # ℹ 22 more variables: Myra <dbl>, Katherine <dbl>, Sylvia <dbl>, Nora <dbl>,
#> #   Helen <dbl>, Dorothy <dbl>, Olivia <dbl>, Flora <dbl>, E1 <dbl>, E2 <dbl>,
#> #   E3 <dbl>, E4 <dbl>, E5 <dbl>, E6 <dbl>, E7 <dbl>, E8 <dbl>, E9 <dbl>,
#> #   E10 <dbl>, E11 <dbl>, E12 <dbl>, E13 <dbl>, E14 <dbl>
#> # A tibble: 14 × 33
#>   names Evelyn Laura Theresa Brenda Charlotte Frances Eleanor Pearl  Ruth Verne
#>   <chr>  <dbl> <dbl>   <dbl>  <dbl>     <dbl>   <dbl>   <dbl> <dbl> <dbl> <dbl>
#> 1 E1         1     1       3      1         3       3       3     3     3     3
#> 2 E2         1     1       1      3         3       3       3     3     3     3
#> 3 E3         1     1       1      1         1       1       3     3     3     3
#> 4 E4         1     3       1      1         1       3       3     3     3     3
#> 5 E5         1     1       1      1         1       1       1     3     1     3
#> 6 E6         1     1       1      1         3       1       1     1     3     3
#> # ℹ 8 more rows
#> # ℹ 22 more variables: Myra <dbl>, Katherine <dbl>, Sylvia <dbl>, Nora <dbl>,
#> #   Helen <dbl>, Dorothy <dbl>, Olivia <dbl>, Flora <dbl>, E1 <dbl>, E2 <dbl>,
#> #   E3 <dbl>, E4 <dbl>, E5 <dbl>, E6 <dbl>, E7 <dbl>, E8 <dbl>, E9 <dbl>,
#> #   E10 <dbl>, E11 <dbl>, E12 <dbl>, E13 <dbl>, E14 <dbl>